
Practical Solutions for Format
Preserving Encryption

Authors: Mor Weiss, Boris Rozenberg, and Muhammad Barham
Presented by Boris Rozenberg (borisr@il.ibm.com)

May 21, 2013

© 2015 IBM Corporation

Talk Outline

• Motivating example

• Encryption: background

• Format Preserving Encryption (FPE):
– Simple constructions

– Better constructions:
• Representing general formats

• Encrypting general formats

– Dealing with large formats

– Evaluation

• Concurrent Work

• Conclusion

© 2015 IBM Corporation

Motivating Example

Need method of preserving
data privacy

???

Need to keep data in
“acceptable” format

Age
Former and present illnesses
Prescribed medication

© 2015 IBM Corporation

Encryption
(keeping data private)

© 2015 IBM Corporation

Encryption Schemes
• A triplet Π = (𝐾𝑒𝑦𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) of algorithms

– Π associated with 3 sets:
• 𝒦: domain of valid keys

• ℳ: message domain

• 𝒞: ciphertext domain.

– 𝐾𝑒𝑦𝐺𝑒𝑛 generates random key from 𝒦

– 𝐸𝑛𝑐 on message (plaintext) 𝑚 ∈ ℳ and key 𝑘 ∈ 𝒦 outputs
ciphertext 𝑐 ∈ 𝒞

– 𝐷𝑒𝑐 on ciphertext 𝑐 ∈ 𝒞 and key 𝑘 ∈ 𝒦 outputs message 𝑚
∈ ℳ

• Deterministic encryption: only 𝐾𝑒𝑦𝐺𝑒𝑛 is randomized
– Everything deterministic once key is chosen

• Assumed adversary knows everything but key
© 2015 IBM Corporation

Encryption Schemes: Required Properties

• A triplet Π = (𝐾𝑒𝑦𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) of algorithms

• Correctness: for every 𝑘 ∈ 𝒦 and every 𝑚 ∈ ℳ
𝐷𝑒𝑐 𝑘, 𝐸𝑛𝑐 𝑘,𝑚 = 𝑚

• Security:
– Many security notions

– Intuitively, ciphertext 𝑐 reveals (almost) no
information on message 𝑚
• Even if adversary has prior knowledge

– Achieved by random 1:1 functions

• For usability, all algorithms must be efficient

© 2015 IBM Corporation

Security-Efficiency Tradeoffs

Efficiency Security

𝐸𝑛𝑐 𝑘,𝑚 = 𝑚
for every key 𝑘

𝐸𝑛𝑐 𝑘,⋅ applies
a random 1:1
function

© 2015 IBM Corporation

Format Preserving Encryption
(encrypting to “acceptable” formats)

© 2015 IBM Corporation

Format Preserving Encryption (FPE)
• Standard encryption maps messages to “garbage”

– May be impossible to store ciphertext in same tables

– Applications using data may crash

• Need some plaintext properties to be preserved

• FPE: Deterministic encryption scheme Π
= (𝐾𝑒𝑦𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

• with additional property 𝓜 = 𝓒

• Ciphertexts have the same format as plaintexts!
– Social security number (ssn) mapped to legal ssn

– Credit card number (ccn) mapped to legal ccn

– Address mapped to legal address

– Etc…
© 2015 IBM Corporation

Example: The DES Encryption
64-bit string

64-bit string

DES is format-preserving!

© 2015 IBM Corporation

FPE Schemes For General Formats:
Simple Solution

• Known encryption schemes are FP for fixed, specific
formats

– Usually, bit strings of fixed length

• What about other formats?

– For CCNs, message space ⊆ 0,1,… , 9 16

– No known encryption for this message space!

• Can use cycle-walking [Black-Rogaway’02]
“if at first you don’t succeed, you pick yourself up and try again”

– Use “standard” encryption with 0,1,… , 9 16 ⊆ ℳ

– Repeat until ciphertext in 0,1,… , 9 16

© 2015 IBM Corporation

Cycle-Walking

Message space 𝓜 = 𝟐𝟏𝟐𝟖

Valid CCNs

𝟎,𝟏,… ,𝟗 𝟏𝟔

© 2015 IBM Corporation

Cycle-Walking: Pros and Cons

Efficiency Security

• Pros:

– Use “off-the-shelf” encryption schemes
• One design for all formats

– Known encryption schemes are provably secure

• Cons:

– Average efficiency depends on ratio between format-size and
message domain size

• Need to repeat
𝑓𝑜𝑟𝑚𝑎𝑡 𝑠𝑖𝑧𝑒

ℳ
times on average

– No bound on actual efficiency

© 2015 IBM Corporation

Improved FPEs for Numeric Domains
• Several known schemes for numeric domains

– Considered due to (in)efficiency of cycle walking

• [Bellare et al. ’09] construct integer-FPE: FPE with ℳ
= 0,1, … ,𝑀 − 1

What about non-numeric domains?

© 2015 IBM Corporation

From Integer-FPE to General-Format FPE

• Can base general-format FPE on integer-FPE using Rank-
then-Encipher (RtE): [Bellare et al. ’09]
– Message space ℳ arbitrarily ordered: rank:ℳ → 0,1, . . , 𝑀

© 2015 IBM Corporation

Warm-Up Example
𝑿 𝒚 𝟕 𝑨

upper
case

lower
case

digit upper
case

23 24 7 0

index each character

rank calculated by scaling and summing the indices

23⋅26⋅10⋅26 + 24⋅10⋅26 + 7⋅26 + 0

idea: compute location in lexicographic order

generalizes decimal counting method

1234 = 1⋅10⋅10⋅10 + 2⋅10⋅10 + 3⋅10 + 4
© 2015 IBM Corporation

Ranking General Formats: Simple Solution

• Want: efficient rank:ℳ → 0,1, . . , 𝑀 − 1

• Can rank every format ℱ defined by

– Length ℓ

– Sets Σ1, … , Σℓ of “legal” characters in locations 1,… , ℓ.

• Simple solution:

– Divide ℳ to subsets ℳ1, … ,ℳ𝑘

– ℳ𝑖 defined by ℓ𝑖 , Σ1
𝑖 , … , Σℓ𝑖

𝑖

– Rank and encryption of 𝑚 ∈ ℳi computed in relation to ℳ𝑖

How to define efficiently?!

© 2015 IBM Corporation

Simple Solution: Security Analysis
Simple solution:

– Divide ℳ to subsets ℳ1, … ,ℳ𝑘

– ℳ𝑖 defined by ℓ𝑖Σ1
𝑖 , … , Σℓ

𝑖

– Rank and encryption of 𝑚 ∈ ℳi computed in relation to ℳ𝑖

Security is compromised:

– Ranking computed in every ℳ𝑖 separately

– So 𝑚 ∈ ℳ𝑖 always encrypted to ciphertext in ℳ𝑖

– Rarely the case for random 1:1 functions 𝑓:ℳ → ℳ,
especially for large 𝑘

Efficiency Security
© 2015 IBM Corporation

Simple Solution: Practical Security
Simple solution:

– Divide ℳ to subsets ℳ1, … ,ℳ𝑘

– ℳ𝑖 defined by ℓ𝑖Σ1
𝑖 , … , Σℓ

𝑖

– Rank and encryption of 𝑚 ∈ ℳi computed in relation to ℳ𝑖

• ℳ = names format:
– 2-4 words
– Every word upper-case followed by 1-10 lower-case

• ℳ𝑖 defines number of words + number of letters in
each word

• “John Smith” can encrypt to “Angm Ojkri” but not to
“Bar Refaeli”

• If only one of them is possible, adversary knows
plaintext for sure

© 2015 IBM Corporation

Optimizing Security-Efficiency Tradeoff
• Cycle walking inefficient since ignores format properties

• Simple solution insecure since preserves “cosmetic”
message properties

• Want a “balanced” encryption scheme

– Take into consider format properties…

– …and preserve only them!

– Need:

• Framework of representing general formats

• Method of ranking general formats

Efficiency Security

Efficiency Security

Efficiency Security

© 2015 IBM Corporation

Representing General Formats: Framework

• Define building-blocks and operations

• Building blocks are called “primitives”

– SSNs

– CCNs

– Dates (between minDate and maxDate)

– Fixed-length strings with index-specific character-sets

• Usually represent “rigid” formats

– e.g., fixed length

• Can also represent “less rigid” formats

– Variable-length strings over some alphabet

(the format we
saw before)

© 2015 IBM Corporation

Representing General Formats: Framework (2)

• Define building-blocks and operations
• Operations allow constructing compound (and complex)

formats from primitives
– Operations preserve the parsing property: compound format can

parse string to ingredients

• Compound formats are called “fields”

• Can construct format ℱ from “smaller” formats ℱ1, … , ℱ𝑘
by:
– Union

– Concatenation:
• ℱ = ℱ1 ⋅ 𝑑1 ⋅ ℱ2 ⋅ … ⋅ 𝑑𝑛−1 ⋅ ℱ𝑛, 𝑑1, … , 𝑑𝑛−1 are delimiter characters

• ℱ = ℱ1 ⋅ … ⋅ ℱ𝑘 in some cases

– Range: ℱ = ℱ1 ⋅ 𝑑 𝑘, 𝑚𝑖𝑛 ≤ 𝑘 ≤ 𝑚𝑎𝑥

© 2015 IBM Corporation

Constructing Compound Formats: Example

• ℱ1 = {A,B,…,Z}

• ℱ2 = length-𝑘 strings of lower-case letters, 1 ≤ 𝑘 ≤ 10

• ℱ3 =SSNs

• Concatenation:

– ℱ𝑤𝑜𝑟𝑑 = ℱ1 ⋅ ℱ2 gives words

– ℱ = ℱ2 ⋅−⋅ ℱ2, e.g., “abc-def” or “aaaaa-bb”

• Union: ℱ = ℱ1 ∪ ℱ3, e.g., “111223333” or “A”

• Range: ℱ𝑛𝑎𝑚𝑒 = ℱ𝑤𝑜𝑟𝑑 ⋅ 𝑠𝑝𝑎𝑐𝑒 𝑘 for 2 ≤ 𝑘 ≤ 4
gives names, e.g. “Bar Refaeli ” or “Louisa May
Alcott ”

© 2015 IBM Corporation

Ranking General Formats

• Define ranking for building-blocks

• Define ranking for operations

• Automatically gives ranking for compound formats:

– Parse string to ingredients

– Delegate ranking of substrings to ingredients

– Use ranking for operations to “glue” ranks together

© 2015 IBM Corporation

Ranking Primitives
• Ranking usually fairly simple:

– SSNs: “basically” 9-digit numbers, remove illegal-SSNs smaller
that given SSN

– CCN: first 15 digits are the rank

– Dates: count seconds since minDate

– Fixed-length strings: Sum-and-Scale

– Variable-length strings: Sum-and-Scale with same-length
strings + offset by number of shorter strings

• Unranking more complex

lexicographic order!

© 2015 IBM Corporation

Ranking Operations: Union

ℱ = ℱ1 ∪ ℱ2

∪

𝑟
© 2015 IBM Corporation

Ranking Operations: Concatenation
ℱ = ℱ1 ⋅ 𝑑 ⋅ ℱ2

⋅ 𝑑 ⋅

𝑚 = 𝑚1 ⋅ 𝑑 ⋅ 𝑚2

𝑟1 𝑟2

Sum-and-Scale:
𝒓 = 𝒓𝟏 ⋅ 𝓕𝟐. 𝐬𝐢𝐳𝐞() + 𝒓𝟐

“smaller” formats interpreted
as character-sets

© 2015 IBM Corporation

Ranking Operations: Range
ℱ = ℱ1 ⋅ 𝑑 𝑘, 1 ≤ 𝑘 ≤ 4

⋅ 𝑑

⋅ 𝑑 ⋅ ⋅ 𝑑

⋅ 𝑑 ⋅ ⋅ 𝑑 ⋅ ⋅ 𝑑

⋅ 𝑑 ⋅ ⋅ 𝑑 ⋅ ⋅ 𝑑 ⋅ ⋅ 𝑑

𝑚 = 𝑚1 ⋅ 𝑑 ⋅ 𝑚2 ⋅ 𝑑 ⋅ 𝑚3 ⋅ 𝑑

𝑟1 𝑟2 𝑟3
Add contribution of shorter strings:

𝒓" = 𝓕𝟏. 𝐬𝐢𝐳𝐞()
𝟐 + 𝓕𝟏. 𝐬𝐢𝐳𝐞()

Sum-and-Scale:

𝒓′ = 𝒓𝟏 ⋅ 𝓕𝟏. 𝐬𝐢𝐳𝐞()
𝟐 + 𝒓𝟐 ⋅ 𝓕𝟏. 𝐬𝐢𝐳𝐞() + 𝒓𝟑

⋅ 𝑑 ⋅ ⋅ 𝑑 ⋅ 𝑑
𝒓 = 𝒓′ + 𝒓"

© 2015 IBM Corporation

Our FPE: Analysis
• Security:

– Only format properties preserved ⇒ security reduces to
security of integer-FPE

– Best security guarantee possible!

• Efficiency:

– Ranking and unranking unavoidable in the Rank-then-
Encipher method

– Efficiency reduces to efficiency of integer-FPE

– Medium-sized domains:

– Large domains: only provably secure scheme [Bellare et al.
‘09] for range 0,1,… ,𝑀 − 1 first factors 𝑀

Efficiency Security

Efficiency Security
© 2015 IBM Corporation

Improving Efficiency For Large Formats

• Efficiency-security tradeoff for large formats:

• 1st solution: use FFX for integer FPE
– Has no rigorous security analysis

• 2nd solution: keep formats small ⇒ reduce format size
– As we will see, this compromises security

– We try to compromise as little as possible

• Partition message-space ℳ: ℳ = ℳ1 ∪ ⋯∪ ℳ𝑛

• But try to “hide” message-specific properties when
possible

• Intuitively, try to increase the ℳ𝑖’s
– Knowing 𝑚 ∈ ℳ𝑖 still leaves “many unknowns”

Efficiency Security

© 2015 IBM Corporation

The “Large Formats” Problem: Closer Look

• Inefficiency due to integer-FPE factoring domain size 𝑀

• Need to restrict domain size when calling integer-FPE

• Ranking and unranking is calculated in relation to 𝑀

• How do we rank in large formats?

• Our solution combines:

– Delegating to sub-formats

– Parsing message to substrings 𝑚 = 𝑚1 …𝑚𝑛 and applying
Rank-the-Encipher separately to every 𝑚𝑖

• Main challenge: parsing 𝑚 while hiding message-
specific properties

– Obtained by keeping sub-formats as large as possible
© 2015 IBM Corporation

Parsing and Ranking Union

∪

𝑚

𝑟

© 2015 IBM Corporation

Parsing and Ranking Concatenation (1)

⋅ 𝑑 ⋅

𝑚 = 𝑚1 ⋅ 𝑑 ⋅ 𝑚2𝑚1 𝑚2

𝑟1

𝑟2

ranking outputs a list
𝒓𝟏 → 𝒓𝟐

each rank encrypted separately:

𝒄𝒊 = 𝒖𝒏𝒓𝒂𝒏𝒌 𝒊𝒏𝒕𝑬𝒏𝒄 𝒓𝒊

Encryption of 𝒎 is concatenation:
𝒄 = 𝒄𝟏 ⋅ 𝒄𝟐

© 2015 IBM Corporation

Parsing and Ranking Concatenation (2)

⋅ 𝑑1 ⋅

𝑚 = 𝑚1 ⋅ 𝑑1 ⋅ 𝑚2 ⋅ 𝑑2 ⋅ 𝑚3 ⋅ 𝑑3 ⋅ 𝑚4 ⋅ 𝑑4 ⋅ 𝑚5𝑚1

𝑟2⋅ 𝑑2 ⋅ ⋅ 𝑑3 ⋅ ⋅ 𝑑4 ⋅

𝑚3 𝑚4 𝑚5

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5

𝒓′ = 𝒓𝟏 ⋅ ℱ𝟐. 𝐬𝐢𝐳𝐞() + 𝒓𝟐, 𝒓" = 𝒓𝟑 ⋅ ℱ𝟒. 𝐬𝐢𝐳𝐞() + 𝒓𝟒, 𝒓"′ = 𝒓𝟓

ranking outputs a list
𝒓′ → 𝒓" → 𝒓"′

each rank encrypted separately:
𝒄′ = 𝒖𝒏𝒓𝒂𝒏𝒌 𝒊𝒏𝒕𝑬𝒏𝒄 𝒓′

𝒄" = 𝒖𝒏𝒓𝒂𝒏𝒌 𝒊𝒏𝒕𝑬𝒏𝒄 𝒄"

𝒄"′ = 𝒖𝒏𝒓𝒂𝒏𝒌 𝒊𝒏𝒕𝑬𝒏𝒄(𝒓"′)

Encryption of 𝒎 is concatenation:
𝒄 = 𝒄′ ⋅ 𝒄" ⋅ 𝒄"′

𝑚2

© 2015 IBM Corporation

Parsing and Ranking Range

⋅ 𝑑

⋅ 𝑑 ⋅ ⋅ 𝑑

⋅ 𝑑 ⋅ ⋅ 𝑑 ⋅ ⋅ 𝑑

⋅ 𝑑 ⋅ ⋅ 𝑑 ⋅ ⋅ 𝑑 ⋅ ⋅ 𝑑

𝑚 = 𝑚1 ⋅ 𝑑 ⋅ 𝑚2 ⋅ 𝑑 ⋅ 𝑚3 ⋅ 𝑑𝑚1 𝑚2 𝑚3

⋅ 𝑑 ⋅ ⋅ 𝑑 ⋅ ⋅ 𝑑𝑚1𝑟1 𝑚2 𝑚3𝑟3𝑟2

𝒓′ = 𝒓𝟏 ⋅ ℱ𝟏. 𝐬𝐢𝐳𝐞() + 𝒓𝟐, 𝒓" = 𝒓𝟑

ranking outputs a list
𝒓′ → 𝒓"

each rank encrypted separately:
𝒄′ = 𝒖𝒏𝒓𝒂𝒏𝒌 𝒊𝒏𝒕𝑬𝒏𝒄 𝒓′

𝒄" = 𝒖𝒏𝒓𝒂𝒏𝒌(𝒊𝒏𝒕𝑬𝒏𝒄 𝒓")

Encryption of 𝒎 is concatenation:
𝒄 = 𝒄′ ⋅ 𝒄"

ℱ = ℱ1 ⋅ 𝑑 𝑘, 1 ≤ 𝑘 ≤ 4

© 2015 IBM Corporation

Security Of Our FPE
• Format sub-dividing preserve some message-specific

properties

• The larger the sub-format, the smaller the probability of
reversing encryption

• Choosing parameters “correctly” ⇒ “reasonable”
tradeoff

Efficiency Security

© 2015 IBM Corporation

Our FPE: Evaluation
• Federal Election Commission (FEC) reports:

– Name, home address, employer, job title

• Format size ~ 𝟐𝟖𝟓𝟔

– FFX achieves better performance

– Splitting significantly improves the FE1 running time

• Setting maxSize < 𝟐𝟐𝟓𝟔 has no efficiaency gain
© 2015 IBM Corporation

Concurrent Work
• libFTE [Luchaup et al. ’14]

– Also employ RtE

– Format represented by regexp

• Regexp->DFA/NFA

• Rank/Unrank using DFA/NFA

• Limitations:
– Designed for developers:

• Defining new format (regexp) requires a developer’s involvement

• outputs several possible schemes out of which developer choses the
most appropriate one

• resultant scheme could have poor performance and there is no way to
know whether a different regex would give better performance

© 2015 IBM Corporation

Concurrent Work (Cont.)
• Performance of our scheme compared to libFTE:

• Running Time: libFTE is ~ twice as fast as our approach

• Memory Usage: libFTE uses ~ 3 time more memory

© 2015 IBM Corporation

Our FPE: Practical Summary
• We provide an FPE for general formats

– First framework for efficiently representing general formats

– First scheme to eliminate cycle-walking
• Efficiency can be measured!

– Optimal security guarantee

– Support of large formats
• With best security guarantee under size limitation

• Ingredients:

– Framework for defining general formats

– Efficient ranking and unranking methods for general formats

– Support of large format
• Through user-defined upper-bound on permissible format sizes

© 2015 IBM Corporation

Thanks For Listening!

© 2015 IBM Corporation

